EGS starts Artemis 1 SLS Core Stage lift

After a month of thermal protection system foam repairs and other preparations, workers with NASA’s… The post EGS starts Artemis 1 SLS Core Stage lift appeared first on NASASpaceFlight.com.

EGS starts Artemis 1 SLS Core Stage lift

After a month of thermal protection system foam repairs and other preparations, workers with NASA’s Exploration Ground Systems (EGS) and prime test operations and support contractor Jacobs at the Kennedy Space Center in Florida started lift operations on the Space Launch System (SLS) Core Stage for Artemis 1 in the Vehicle Assembly Building (VAB) on June 10. Early on June 11, two of the overhead cranes in the VAB rotated the Core Stage from horizontal to vertical in the Transfer Aisle.

Work will continue over the weekend of June 12-13 to lift the stage up into High Bay 3, position it in between the two SLS Boosters already stacked on Mobile Launcher-1, and bolt them together.

Lift and breakover begins after extended TPS repairs

The first flight SLS Core Stage was finally rotated to its vertical launch orientation at KSC early on the morning of June 11. It was expected to be lifted from the transfer aisle up towards the ceiling of the VAB and then over into High Bay 3 to be lowered into place between the two SLS Solid Rocket Boosters (SRB) stacked on the Mobile Launcher.

“Stacking” of the Core and Boosters is be a big milestone in any SLS launch campaign, but work on all the other Artemis 1 flight hardware at KSC was delayed waiting for this Core Stage lift and eventual mate, increasing its significance in even this first launch processing flow. Once the mate is completed, the Core-Boosters “partial stack” will allow the EGS and Jacobs integrated operations team to branch out on parallel work activities to fully stack the rest of the vehicle, conduct special first-time tests, and finish pre-launch checkouts.

The SLS Core Stage was the final element to arrive for launch, completing its special Green Run design verification campaign in April and arriving at KSC later that same month.

Following the full duration test-firing of the stage in the B-2 Test Stand at Stennis on March 18, some post Green Run refurbishment work was deferred until after the Core was shipped to Florida. Standard post-firing refurbishment of the four RS-25 Core Stage engines was completed at Stennis, but work to refurbish the stage’s foam insulation for its cryogenic propellant tanks and the foil and cork heat protection around the base heatshield were deferred to KSC.

Credit: NASA/Cory Huston.

(Photo Caption: EGS and Jacobs lift team members monitor Core Stage lift operations in the VAB Transfer Aisle during the midnight hours of June 11. The yellow lift spider attached to the forward end of the stage is ground equipment supporting lift and breakover activities. It will be removed after the stage is hard-mated to the Boosters as a part of preparations to continue stacking the rest of the SLS vehicle elements.)

After four weeks of thermal protection system (TPS) refurbishment work and standard post-arrival preparations, scaffolding around the stage was removed, purges were disconnected, and self-propelled motorized transporters (SPMTs) were used to move the carriers with the Core Stage on board north in the transfer aisle, on June 6, to the area in between the VAB’s high bays to prepare for dual-crane operations to reorient the Core from horizontal to vertical and then lift it into High Bay 3 for mating to the Boosters.

A “lift spider” was again attached to the front of the Core Stage the next day on June 7; the approximately 20-ton, yellow lifting fixture is identical to another unit that stayed attached to the stage at Stennis for the whole Green Run campaign. The fixture provides the forward lifting point for the stage.

Once the stage was moved into the north transfer aisle, it had been expected that the team would press into lift operations; however, completing all TPS repair work delayed the final lift. Delays were anticipated during this first-time-through launch vehicle and spacecraft integration process for Artemis 1, and EGS planned for the work to take a risk-assessed 10 months to complete once the Core Stage arrived at KSC.

EGS assessed as much as four months of risk to a schedule showing six months of work; the current no earlier than (NET) date for launch readiness is late-November, but going through the first-time learning curves and accumulating delays of a few days here and there is more likely to push launch readiness into early 2022. The fully “risk assessed” launch readiness date is March 2022.

After the additional TPS work was completed in the north transfer aisle, lift preparations resumed on June 9 with the connection of the two cranes to raise the Core Stage off its transportation carrier. One of the two 325-ton VAB cranes was attached to the lift spider, and the 175-ton transfer aisle crane was hooked up to lift points on the structural ring of the stage’s engine section.

After the lift started on June 10, with the cranes taking up the load of the Core Stage from its carrier pieces, workers performed a breakover operation early on the morning of June 11 to rotate the stage vertical where it could be controlled by the single 325-ton crane on top. The trailing lifting fixture and crane were disconnected.

The next major step will be to lift the stage up into the diaphragm opening between the transfer aisle and the High Bay 3 integration cell.

Credit: NASA/Cory Huston.

(Photo Caption: Core Stage-1 is rotated from a horizontal orientation to vertical in the VAB Transfer Aisle early on June 11.  The 175-ton crane on the left is lowering and translating the aft end of the stage while on the right one of two 325-ton cranes is raising the forward end.  After the stage was vertical, the trailing 175-ton crane was disconnected.)

The crane will then lower the stage down into position between the two Solid Rocket Boosters. To create extra clearance while the Core is being lowered between them, “puller straps” will be used to pull the boosters slightly outward.

The stage has both forward and aft attach points where it will be bolted to the SRBs. A thrust beam runs through the middle of the intertank in the Core, between the forward attach points of each booster, to help channel the loads of the SRB thrust during launch.

In the forward “ball and socket” connection, the Core Stage and the sockets on its fittings rest on top of the Booster attach points — where a separation bolt will join them. Three struts on the aft end of each Booster connect to the engine section of the stage.

Pre-mate Core Stage work

Moving the Core Stage into position was only possible after completing post Green Run TPS refurbishment work in the VAB Transfer Aisle where it could be done with less weather interruptions versus outside in the B-2 Test Stand. The VAB also provides better access to the stage in a horizontal orientation.

The stage was rolled off NASA’s Pegasus barge on April 29 and taken into the southern part of the VAB transfer aisle. After the stage and its transportation carrier were set down in the low-bay area of the transfer aisle, scaffolding was set up for repairs to the acreage and for closeout foam sprays where cracks had developed during propellant loading cycles and the long test-firing at Stennis.

After EGS and Jacobs completed receiving inspections of the stage, an approximately four-week timeline was established to perform all the foam repairs and refurbishment — mostly at the forward end of the vehicle. Within that same timeline, more typical Core Stage KSC arrival activities like installation of Flight Termination System (FTS) components were completed as well. Given the opportunity of time, it was decided to also start the cork TPS work on the bottom of the stage by removing the burned areas on the base heatshield.

“We had time and resources available to work it ahead of stacking,” Michael Alldredge, NASA SLS TPS Subsystem Manager, said in an email. He added: “We didn’t really know how difficult it would be to get [the damaged cork] off, so we wanted to start as soon as possible in case we ran into problems.”

Credit: NASA/Kim Shiflett.

(Photo Caption: The greenish primer coating the base heatshield can be seen in this June 4 image in areas where the layer of charred cork thermal protection was removed during the month of May at KSC. The removed cork was damaged by the eight-minute long Green Run test-firing in mid-March. After the Core is stacked vertically with its Boosters, new sections of cork material will be applied to the metal substrate and then coated with a white paint like the rest of the engine section and boattail.)

The engine section and the boattail at its aft end are covered with cork panels, which are then coated with a white paint that acts as a moisture barrier. For the Green Run test-firings, the boattail was covered with an additional layer of foil tape to protect against the extra heat generated during a full eight minute flight-duration firing of the four-engine RS-25 cluster.

The aft face of the boattail, the base heatshield, took the brunt of the heating during the test-firing; adjacent areas such as the boattail fairing and the engine section barrel suffered little heat damage.

For the repair, Boeing removed some of the affected cork and also started removing leftover foil tape. The base heatshield refurbishment will now be completed after stacking, where work can be done without much conflict with the integrated test and checkout of the vehicle.

“There is a good bit of TPS work to perform on the base heat shield once we get into the High Bay,” Alldredge said. “We took the damaged cork off in the transfer aisle, and will re-install and paint it in the high bay.”

Preparations for Integrated Test and Check-Out next

Once the Core is fully mated to the boosters, work in the High Bay will branch out in parallel on multiple paths to get ready for power up and Integrated Test and Checkout (ITCO) operations of the Artemis 1 vehicle. Assembling the rest of the SLS elements on top of the Core Stage will occur in parallel with connecting the Mobile Launcher umbilicals to the Core and preparing for an Integrated Modal Test.

Stacking of the upper SLS elements will begin with the Launch Vehicle Stage Adapter (LVSA), which will be lifted on top of the Core Stage and bolted into place. That operation is currently scheduled for the week of June 14 but is dependent on completion of Core Stage mate operations.

Credit: NASA/Frank Michaux.

(Photo Caption: The two SLS Solid Rocket Boosters (SRB) are seen from the top of the Mobile Launcher’s umbilical tower on June 9. An RS-25 engine service platform can be seen in between the Boosters along with a recently-delivered Tail Service Mast Umbilical plate.)

The Interim Cryogenic Propulsion Stage (ICPS), derived by United Launch Alliance from its Delta IV launch vehicle, would be stacked next. The ICPS is currently in the Multi-Payload Processing Facility (MPPF), where it was loaded with hydrazine for its attitude control system on June 4.

It is currently scheduled to be moved to the VAB the week of June 21.

Because this is the first time an SLS vehicle is being integrated, the SLS Program and its contractors have formed a quick response “tiger team” to be ready for any issues that come up as EGS and Jacobs perform the stacking work.

After the ICPS is stacked, an Orion Stage Adapter would follow, with the first round of stacking being completed with a Mass Simulator for Orion, after which teams will perform an Interface Verification Test that will see the EGS ground control system power up the fully assembled SLS for the first time.

The Interface Verification Test will validate that the vehicle and ground systems are correctly connected and operating with each other.

After this, an Umbilical Release and Retract Test will occur to ensure all of the Mobile Launcher’s swing arms can properly and safely detach and swing away as planned from the vehicle.

The Integrated Modal Test, where workers shake the vehicle, will follow at the end of the first series of tests.

While the initial SLS powered checkout and modal testing is being performed in the VAB, the Artemis 1 Orion spacecraft will complete its standalone, “offline” processing. Like the ICPS, Orion is currently in the MPPF, now with its flight commodities fully loaded. After completing propellant loading of the Service Module in April, the Crew Module’s gaseous helium tanks were loaded in early-May ahead of Crew Module hydrazine tank fueling in mid-May.

Current plans are for Orion to be moved to the Launch Abort System Facility for its final offline outfitting for launch, where the inert Launch Abort System (LAS) for Artemis 1 — which combines a live jettison motor with inert abort and attitude control motors — will be stacked on top of the Crew Module. Four ogive-shaped fairing panels will also be installed to encapsulate the Crew Module.

After the LAS is installed and the first round of SLS testing is completed in the VAB, Orion will then be transported to the VAB to be lifted and mated to SLS no earlier than mid-August.

The Artemis 1 mission management team is currently working through flight readiness analysis cycles, calculating lunar launch opportunities and vehicle performance margins. Currently, the first launch period available for an NET late-November 2021 readiness date is Launch Period 15, which opens on November 23 and runs through December 10. Following that, Launch Period 16 is December 21 through January 3, 2022, with Launch Period 17 running January 17 through January 30.

(Lead image credits: NASA/Cory Huston.)

The post EGS starts Artemis 1 SLS Core Stage lift appeared first on NASASpaceFlight.com.

Source : NASA More   

What's Your Reaction?

like
0
dislike
0
love
0
funny
0
angry
0
sad
0
wow
0

Next Article

The Big Build: Artemis I Stacks UpOur Space Launch System (SLS) rocket is coming together at the...

The Big Build: Artemis I Stacks UpOur Space Launch System (SLS) rocket is coming together at the agency’s Kennedy Space Center in Florida this summer. Our mighty SLS rocket is set to power the Artemis I mission to send our Orion spacecraft around the Moon. But, before it heads to the Moon, NASA puts it together right here on Earth.Read on for more on how our Moon rocket for Artemis I will come together this summer:Get the BaseHow do crews assemble a rocket and spacecraft as tall as a skyscraper? The process all starts inside the iconic Vehicle Assembly Building at Kennedy with the mobile launcher. Recognized as a Florida Space Coast landmark, the Vehicle Assembly Building, or VAB, houses special cranes, lifts, and equipment to move and connect the spaceflight hardware together. Orion and all five of the major parts of the Artemis I rocket are already at Kennedy in preparation for launch. Inside the VAB, teams carefully stack and connect the elements to the mobile launcher, which serves as a platform for assembly and, later, for fueling and launching the rocket.Start with the boostersBecause they carry the entire weight of the rocket and spacecraft, the twin solid rocket boosters for our SLS rocket are the first elements to be stacked on the mobile launcher inside the VAB. Crews with NASA’s Exploration Ground Systems and contractor Jacobs team completed stacking the boosters in March. Each taller than the Statue of Liberty and adorned with the iconic NASA “worm” logo, the five-segment boosters flank either side of the rocket’s core stage and upper stage. At launch, each booster produces more than 3.6 million pounds of thrust in just two minutes to quickly lift the rocket and spacecraft off the pad and to space.Bring in the core stageIn between the twin solid rocket boosters is the core stage. The stage has two huge liquid propellant tanks, computers that control the rocket’s flight, and four RS-25 engines. Weighing more than 188,000 pounds without fuel and standing 212 feet, the core stage is the largest element of the SLS rocket. To place the core stage in between the two boosters, teams will use a heavy-lift crane to raise and lower the stage into place on the mobile launcher.On launch day, the core stage’s RS-25 engines produce more than 2 million pounds of thrust and ignite just before the boosters. Together, the boosters and engines produce 8.8 million pounds of thrust to send the SLS and Orion into orbit.Add the Launch Vehicle Stage Adapter Once the boosters and core stage are secured, teams add the launch vehicle stage adapter, or LVSA, to the stack. The LVSA is a cone-shaped element that connects the rocket’s core stage and Interim Cryogenic Propulsion Stage (ICPS), or upper stage. The roughly 30-foot LVSA houses and protects the RL10 engine that powers the ICPS. Once teams bolt the LVSA into place on top of the rocket, the diameter of SLS will officially change from a wide base to a more narrow point — much like a change in the shape of a pencil from eraser to point.Lower the Interim Cryogenic Propulsion Stage into placeNext in the stacking line-up is the Interim Cryogenic Propulsion Stage or ICPS. Like the LVSA, crews will lift and bolt the ICPS into place. To help power our deep space missions and goals, our SLS rocket delivers propulsion in phases. At liftoff, the core stage and solid rocket boosters will propel Artemis I off the launch pad. Once in orbit, the ICPS and its single RL10 engine will provide nearly 25,000 pounds of thrust to send our Orion spacecraft on a precise trajectory to the Moon.Nearly there with the Orion stage adapterWhen the Orion stage adapter crowns the top of the ICPS, you’ll know we’re nearly complete with stacking SLS rocket for Artemis I. The Orion Stage Adapter is more than just a connection point. At five feet in height, the Orion stage adapter may be small, but it holds and carries several small satellites called CubeSats. After Orion separates from the SLS rocket and heads to the Moon, these shoebox-sized payloads are released into space for their own missions to conduct science and technology research vital to deep space exploration. Compared to the rest of the rocket and spacecraft, the Orion stage adapter is the smallest SLS component that’s stacked for Artemis I.Top it offFinally, our Orion spacecraft will be placed on top of our Moon rocket inside the VAB. The final piece will be easy to spot as teams recently added the bright red NASA “worm” logotype to the outside of the spacecraft. The Orion spacecraft is much more than just a capsule built to carry crew. It has a launch abort system, which will carry the crew to safety in case of an emergency, and a service module developed by the European Space Agency that will power and propel the spacecraft during its three-week mission. On the uncrewed Artemis I mission, Orion will check out the spacecraft’s critical systems, including navigation, communications systems, and the heat shield needed to support astronaut

The Big Build: Artemis I Stacks UpOur Space Launch System (SLS) rocket is coming together at the...

The Big Build: Artemis I Stacks Up

Our Space Launch System (SLS) rocket is coming together at the agency’s Kennedy Space Center in Florida this summer. Our mighty SLS rocket is set to power the Artemis I mission to send our Orion spacecraft around the Moon. But, before it heads to the Moon, NASA puts it together right here on Earth.

Read on for more on how our Moon rocket for Artemis I will come together this summer:

Get the Base

How do crews assemble a rocket and spacecraft as tall as a skyscraper? The process all starts inside the iconic Vehicle Assembly Building at Kennedy with the mobile launcher. Recognized as a Florida Space Coast landmark, the Vehicle Assembly Building, or VAB, houses special cranes, lifts, and equipment to move and connect the spaceflight hardware together. Orion and all five of the major parts of the Artemis I rocket are already at Kennedy in preparation for launch. Inside the VAB, teams carefully stack and connect the elements to the mobile launcher, which serves as a platform for assembly and, later, for fueling and launching the rocket.

Start with the boosters

Because they carry the entire weight of the rocket and spacecraft, the twin solid rocket boosters for our SLS rocket are the first elements to be stacked on the mobile launcher inside the VAB. Crews with NASA’s Exploration Ground Systems and contractor Jacobs team completed stacking the boosters in March. Each taller than the Statue of Liberty and adorned with the iconic NASA “worm” logo, the five-segment boosters flank either side of the rocket’s core stage and upper stage. At launch, each booster produces more than 3.6 million pounds of thrust in just two minutes to quickly lift the rocket and spacecraft off the pad and to space.

Bring in the core stage

In between the twin solid rocket boosters is the core stage. The stage has two huge liquid propellant tanks, computers that control the rocket’s flight, and four RS-25 engines. Weighing more than 188,000 pounds without fuel and standing 212 feet, the core stage is the largest element of the SLS rocket. To place the core stage in between the two boosters, teams will use a heavy-lift crane to raise and lower the stage into place on the mobile launcher.

On launch day, the core stage’s RS-25 engines produce more than 2 million pounds of thrust and ignite just before the boosters. Together, the boosters and engines produce 8.8 million pounds of thrust to send the SLS and Orion into orbit.

Add the Launch Vehicle Stage Adapter

Once the boosters and core stage are secured, teams add the launch vehicle stage adapter, or LVSA, to the stack. The LVSA is a cone-shaped element that connects the rocket’s core stage and Interim Cryogenic Propulsion Stage (ICPS), or upper stage. The roughly 30-foot LVSA houses and protects the RL10 engine that powers the ICPS. Once teams bolt the LVSA into place on top of the rocket, the diameter of SLS will officially change from a wide base to a more narrow point — much like a change in the shape of a pencil from eraser to point.

Lower the Interim Cryogenic Propulsion Stage into place

Next in the stacking line-up is the Interim Cryogenic Propulsion Stage or ICPS. Like the LVSA, crews will lift and bolt the ICPS into place. To help power our deep space missions and goals, our SLS rocket delivers propulsion in phases. At liftoff, the core stage and solid rocket boosters will propel Artemis I off the launch pad. Once in orbit, the ICPS and its single RL10 engine will provide nearly 25,000 pounds of thrust to send our Orion spacecraft on a precise trajectory to the Moon.

Nearly there with the Orion stage adapter

When the Orion stage adapter crowns the top of the ICPS, you’ll know we’re nearly complete with stacking SLS rocket for Artemis I. The Orion Stage Adapter is more than just a connection point. At five feet in height, the Orion stage adapter may be small, but it holds and carries several small satellites called CubeSats. After Orion separates from the SLS rocket and heads to the Moon, these shoebox-sized payloads are released into space for their own missions to conduct science and technology research vital to deep space exploration. Compared to the rest of the rocket and spacecraft, the Orion stage adapter is the smallest SLS component that’s stacked for Artemis I.

Top it off

Finally, our Orion spacecraft will be placed on top of our Moon rocket inside the VAB. The final piece will be easy to spot as teams recently added the bright red NASA “worm” logotype to the outside of the spacecraft. The Orion spacecraft is much more than just a capsule built to carry crew. It has a launch abort system, which will carry the crew to safety in case of an emergency, and a service module developed by the European Space Agency that will power and propel the spacecraft during its three-week mission. On the uncrewed Artemis I mission, Orion will check out the spacecraft’s critical systems, including navigation, communications systems, and the heat shield needed to support astronauts who will fly on Artemis II and beyond.

Ready for launch!

The path to the pad requires many steps and check lists. Before Artemis I rolls to the launch pad, teams will finalize outfitting and other important assembly work inside the VAB. Once assembled, the integrated SLS rocket and Orion will undergo several final tests and checkouts in the VAB and on the launch pad before it’s readied for launch.

The Artemis I mission is the first in a series of increasingly complex missions that will pave the way for landing the first woman and the first person of color on the Moon. The Space Launch System is the only rocket that can send NASA astronauts aboard NASA’s Orion spacecraft and supplies to the Moon in a single mission.

Make sure to follow us on Tumblr for your regular dose of space!

Source : NASA More   

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.